On non-detects in qPCR data
نویسندگان
چکیده
منابع مشابه
On non-detects in qPCR data
MOTIVATION Quantitative real-time PCR (qPCR) is one of the most widely used methods to measure gene expression. Despite extensive research in qPCR laboratory protocols, normalization and statistical analysis, little attention has been given to qPCR non-detects-those reactions failing to produce a minimum amount of signal. RESULTS We show that the common methods of handling qPCR non-detects le...
متن کاملImpact of non-detects in water quality data on estimation of constituent mass loading.
Often, fractions of stormwater constituents are not detected above laboratory reporting limits and are reported as non-detect (ND), or censored data. Analysts and stormwater modelers represent these NDs in stormwater data sets using a variety of methods. Application of these different methods results in different estimates of constituent mean concentrations that will, in turn, affect mass loadi...
متن کاملThe qPCR data statistical analysis
Since the invention of real-time PCR (qPCR), thousands of high-impact studies have been conducted and published using qPCR technique (Heid et al. 1996; Higuchi et al. 1993; VanGuilder, Vrana, and Freeman 2008). Because it is highly sensitive, qPCR is the preferred method for microarray data validation (Canales et al. 2006); however the most exciting applications have been in the discovery of ne...
متن کاملNormalization of qPCR array data: a novel method based on procrustes superimposition
MicroRNAs (miRNAs) are short, endogenous non-coding RNAs that function as guide molecules to regulate transcription of their target messenger RNAs. Several methods including low-density qPCR arrays are being increasingly used to profile the expression of these molecules in a variety of different biological conditions. Reliable analysis of expression profiles demands removal of technical variati...
متن کاملNon-discretionary imprecise data in efficiency Measurement
This paper introduces discretionary imprecise data in Data Envelopment Analysis (DEA) and discusses the efficiency evaluation of Decision Making Units (DMUs) with non-discretionary imprecise data. Then, suggests a method for evaluation the efficiency of DMUs with non-discretionary imprecise data. When some inputs and outputs are imprecise and non-discretionary, the DEA model becomes non-linear ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2014
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/btu239